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Abstract
The linear and nonlinear dynamic response to an oscillatory shear flow of giant wormlike
micelles consisting of Pb–Peo block copolymers is studied by means of Fourier transform
rheology. Experiments are performed in the vicinity of the isotropic–nematic phase transition
concentration, where the location of isotropic–nematic phase transition lines is determined
independently. Strong shear-thinning behaviour is observed due to critical slowing down of
orientational diffusion as a result of the vicinity of the isotropic–nematic spinodal. This severe
shear-thinning behaviour is shown to result in gradient shear banding. Time-resolved
small-angle neutron scattering experiments are used to obtain an insight into the microscopic
phenomena that underlie the observed rheological response. An equation of motion for the order
parameter tensor and an expression of the stress tensor in terms of the order parameter tensor
are used to interpret the experimental data, both in the linear and nonlinear regimes. Scaling of
the dynamic behaviour of the orientational order parameter and the stress is found when critical
slowing down due to the vicinity of the isotropic–nematic spinodal is accounted for.

1. Introduction

Dispersions of surfactant wormlike micelles form a class
of systems that has been intensively studied during the
past two decades. Wormlike micellar systems sometimes
exhibit extreme shear-thinning behaviour (Berret 2004),
resulting in shear-induced structure formation like shear
banding (Manneville 2008). Strong shear thinning is of
practical interest, since often systems are required in practical
applications that exhibit extreme differences in viscosity
between the sheared and quiescent states. The reason for
the popularity of wormlike micelles lies in their complex
rheological behaviour like shear banding and chaotic response,
which are connected to the thinning behaviour of these systems
(Berret 2004). It is therefore important to understand the
microscopic mechanism underlying the very strong shear-
thinning behaviour of wormlike micelles. There are several
possible microscopic mechanisms that could be responsible
for the occurrence of strong shear thinning (Cates and
Candau 1990). One mechanism is related to the breaking
and/or merging of worms. Scission due to shearing forces
and merging of worms through stressed entanglement points
(Briels et al 2004) can lead to strong shear thinning. Another

possible mechanism for strong shear thinning is connected
to the fact that wormlike systems can undergo an isotropic–
nematic (I–N) phase transition. Rotational diffusion close to
I–N spinodal lines in the phase diagram is very slow, so that
a relatively strong alignment on applying shear flow occurs.
Such a strong increase in the degree of alignment leads in
turn to strong shear thinning. We shall hereafter refer to
the slowing down of rotational diffusion close to the I–N
spinodals simply as ‘critical slowing down’. By definition,
the rotational diffusion coefficient at the spinodal changes sign,
and is therefore zero at the spinodal, which implies very slow
rotational Brownian motion.

For most studied surfactant wormlike micellar systems,
the I–N transition occurs at relatively high volume fractions
of around 10%. At this high concentration the viscosity of
the system is quite large, and moreover a transition to a gel
phase can interfere. For CPLC/NaSal inbrine, for example,
gelling occurs in the vicinity of the I–N transition on changing
the temperature by just a few degrees. Furthermore, the I–N
transition is only found under flow conditions. These features
complicate detailed studies on the rheological response of
wormlike micelles and its microscopic origin. We therefore
study here a system that exhibits many of the properties
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of wormlike micellar systems that are responsible for their
interesting rheological behaviour, but that does not have
the above-mentioned complications of surfactant wormlike
micellar systems. For an I–N transition to occur without flow,
we need a system where the persistence length lp is much
larger than the thickness d of the chains. The ratio lp/d should
be larger compared to typical values for wormlike micelles.
A candidate system could be micelles formed from block
copolymers. A well-studied system is the poly(butadiene)–
poly(ethylene oxide) (Pb–Peo) diblock copolymer with a 50–
50 block composition in aqueous solution. The main advantage
of this system is that it is very stiff, with a persistence
length of around 500 nm and a diameter of 14 nm. The
contour length of the Pb–Peo worms is around 1 μm. As a
result of the large ratio lp/d compared to common surfactant
micellar systems, the diblock copolymer system shows an I–
N transition at a modest concentration of about 5%, although
the transition concentration has not been determined accurately
yet (Won et al 1999). Other advantages of the Pb–Peo
system are that it is possible to tune the monomer-exchange
kinetics between the polymers (Lund et al 2006) or its
morphology (Denkova et al 2008) by using different solvent
mixtures. Furthermore, these polymers are easily marked
with fluorescent dyes, which enables their visualization with
fluorescence microscopy. In a recent study Förster et al used
this system, amongst others, for Rheo-SANS measurements,
where stationary shear measurements were combined with
small-angle neutron scattering (SANS) (Förster et al 2005). A
feature of this diblock copolymer system that is probably not
shared with micellar systems is that the polymers do not easily
break and merge under flow. We thus focus on the microscopic
mechanism mentioned above, related to critical slowing down
of rotational diffusion close to the I–N transition.

In section 2, a well-known theoretical framework for
the dynamics and rheological behaviour of stiff rods is
summarized. This theory does not include flexibility of
single polymer chains, but does include the slowing down of
rotational diffusion due to the vicinity of the I–N spinodal.
This theory will be used to assess the effect of the vicinity of
the I–N transition on rheological response. A comparison of
our experiments with predictions based on this theory can only
be done on a qualitative level, since flexibility is neglected in
the theory. After the materials section we describe a newly
developed time-resolved SANS set-up, and the couette cells
and rheometers that were used. In section 5 we first discuss
the flow curve of the system and determine the corresponding
flow profiles. It is also shown in this section how the (non-
equilibrium) binodal line can be found from shear step-down
experiments. Then we discuss SANS experiments on quiescent
and stationary sheared systems, which we need as an input
in the last subsection on dynamic experiments. In the latter
subsection we connect the time-resolved SANS measurements
with Fourier transform rheology results. The spinodal point is
determined in order to establish whether the concept of critical
slowing down indeed applies.

2. Theory

2.1. Concentration dependence of the rotational diffusion
coefficient

On approach of the isotropic–nematic (I–N) spinodal, the
collective rotational diffusion coefficient vanishes and becomes
negative in the unstable part of the phase diagram. As will be
discussed later, this rotational diffusion coefficient describes
the dynamics of small perturbations of the orientational order
parameter from its value in a stationary state. For a system
of very long and thin, rigid rods with repulsive interactions
that have a range that is small compared to the length of the
rods, critical slowing is described by the equation of motion
for the orientational order parameter tensor S ≡ 〈ûû〉, where û
is the unit vector along the long axis of a rod, which specifies
the orientation of the rod, and where the brackets indicate
ensemble averaging. Starting from the Smoluchowski equation
for rod-like colloids with hard-core interactions, an equation of
motion for S can be derived (Dhont and Briels 2003a), which
is similar to the Doi–Edwards equation of motion (Doi and
Edwards 1986):

d

dt
S = −6Dr

{
S − 1

3 Î + L
D ϕ

(
S(4):S − S · S

)}

+ γ̇
{
Γ̂ · S + S · Γ̂T − 2S(4):Ê}

, (1)

where Dr is the rotational diffusion coefficient at infinite
dilution, L is the length of the rods, d their core diameter, ϕ

is the volume fraction of rods, γ̇ is the shear rate, Γ̂ is the
velocity-gradient tensor and Ê = 1

2 [Γ̂+Γ̂T] is the symmetrized
velocity-gradient tensor (where the superscript ‘T’ stands for
‘transpose’). Furthermore, S(4) ≡ 〈ûûûû〉 is a fourth-order
tensor. A closure relation that expresses contractions of the
form S(4):M in terms of S for arbitrary second rank tensors M
is discussed in (Dhont and Briels 2003a):

〈û û û û〉:M = 1
5

{
S · M + M · S − S · S · M

− M · S · S + 2S · M · S + 3SS:M}
, (2)

where M = 1
2 [M + MT] is the symmetric part of the tensor

M. For simple shear flow, the velocity-gradient tensor has the
form

Γ̂ =
( 0 1 0

0 0 0
0 0 0

)

, (3)

which corresponds to a flow in the x direction with its gradient
in the y direction.

The largest eigenvalue λ of S, the ‘orientational order
parameter’, is a measure of the degree of alignment (for the
isotropic state λ = 1/3 and for a perfectly aligned state, λ =
1). In order to illustrate critical slowing down of orientational
diffusion, we consider first an isotropic state which is slightly
perturbed. The equation of motion for a small perturbation δλ

of λ = 1/3 in the isotropic state, in the absence of flow, is
readily obtained from equation (1) together with the closure
relation (2):

dδλ

dt
= −6Dr

{
1 − 1

4

L

d
φ

}
δλ = −6Deff

r δλ (4)
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where

Deff
r = Dr

{
1 − 1

4

L

d
φ

}
(5)

is the effective rotational diffusion coefficient. Hence,

δλ(t) = δλ(t = 0) exp {−6 Deff
r t}. (6)

From equation (5) it can be seen that Deff
r → 0 as (L/d)ϕ →

4. Collective rotational diffusion thus becomes very slow on
approach of the spinodal concentration where (L/d)ϕ = 4.
For larger concentrations, where Deff

r < 0, the isotropic state
is unstable, and the initially small orientational order parameter
increases in time. In the presence of shear flow, the above
analysis must be done numerically, since the unperturbed
(stable or unstable) stationary state under shear flow is
not known analytically. The effective rotational diffusion
coefficient is now a tensorial quantity rather than a scalar as for
the isotropic state discussed above. The phenomenon of critical
slowing down, however, is unchanged: rotational diffusion
becomes very slow on approach of the spinodal (where at
least one of the eigenvalues of the rotational diffusion tensor
changes sign). This slowing down of rotational diffusion has
pronounced effects on the shear-thinning behaviour, as will be
discussed later.

2.2. Dynamic response of stress and orientational order

From microscopic considerations, an expression for the stress
tensor Σ can be obtained (Dhont and Briels 2003b), which is
similar to an earlier derived expression by Doi and Edwards
(Doi and Edwards 1986):

ΣD = 2η0γ̇

[
Ê + (L/D)2

3 ln{L/D}ϕ

×
{
Γ̂ · S + S · Γ̂T − S(4):Ê − 1

3
ÎS:Ê − 1

γ̇

dS
dt

}]
. (7)

For an oscillatory shear flow, the shear rate γ̇ in equations (1)
and (7) is time-dependent:

γ̇ (t) = γ̇0 cos{ωt}, (8)

where γ̇0 = Aω is the shear amplitude, with A the strain
amplitude and ω the frequency of oscillation.

The linear and nonlinear response of suspensions or
rigid rods, within the approximations involved in the theory,
can be obtained from numerical solutions of equations (1)
and (7) (Dhont and Briels 2003a). In particular, dynamic
response functions can be obtained from a Fourier analysis
of the time dependence of the stress tensor after transients
have relaxed. For sufficiently large shear rates, higher-order
nonlinear response functions come into play. For these higher
shear amplitudes, the time-dependent stress tensor must be
Fourier-expanded as

ΣD = 2γ̇0Ê
∞∑

n=0

|η|n sin(nωt + δn), (9)

where |η|n and δn are the amplitude and phase shift of
the Fourier components, respectively. Similarly, the scalar
orientational order parameter will respond in a nonlinear
fashion, so that

P2(t) =
∞∑

n

|P2|n cos(ωt + εn), (10)

where P2 = 1
2 [3λ − 1] (as before, λ is the largest eigenvalue

of S). It should be mentioned that in scattering experiments
only projections of the orientational order parameter tensor are
probed. In that case, P2 in equation (10) does not correspond
to the largest eigenvalue of S, but only to the corresponding
projection of S. In the experiments described in this paper the
vorticity-flow plane is probed, for which it is readily shown
from equation (1) by expanding S for small shear rates that
the leading term in shear rate varies like ∼γ̇ 2. The time
dependence of the experimentally determined orientational
order parameter term has therefore the double frequency of the
applied shear flow.

One may ask about the shear rate beyond which nonlinear
response is expected, and beyond which a frequency phase
shift will be found. An analysis of the equation of motion (1)
and the expression (7) for the stress tensor for the isotropic
state and to leading order in nonlinearity reveals that the so-
called effective Peclet number:

Peeff = γ̇0/Deff
r , (11)

and the effective Deborah number:


eff = ω/Deff
r , (12)

measure the nonlinearity and phase shift. Here, the effective
rotational diffusion coefficient is given in equation (5).

3. Material

In this study we used a symmetric Pb–Peo block copolymer
prepared by living anionic polymerization; the synthesis fol-
lows a two-step procedure since the polymerization conditions
for ethylene oxide are different from those for butadiene. De-
tails of the two-step procedure can be found in an earlier publi-
cation (Allgaier et al 1997). The Pb–Peo block copolymer was
characterized by size exclusion chromatography (SEC) using
a mixture of tetrahydrofuran/dimethylacetamide 90/10 v/v as
eluant. The polydispersity, Mw/Mn, of the block copolymer
was smaller than 1.04. No signs of PEO and PB homopoly-
mers were found in the SEC chromatograms. Absolute molec-
ular weights were determined by 1H-NMR measurements in
CDCl3. Thereby, the signal of the t-butyl initiator group was
taken as an internal reference. The number average molecu-
lar weights, Mn, are 2.6 kg mol−1 for PB and 2.64 kg mol−1

for PEO. Polymer solutions were prepared by dissolving the
polymer in D2O (Chemotrade, %D = 99.8%) and, in order
to guarantee its complete dissolution, especially in the case of
high concentration samples, they were kept for half an hour at
56 ◦C and then left to cool down slowly to the ambient temper-
ature. When not specified otherwise, the concentrations will be
expressed as a weight fraction.

3
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Figure 1. (a) Flow curves for different Pb–Peo concentrations.
(b) The relative flow velocity �v(x) = V (x) − γ̇ x throughout the
gap of the couette cell for various applied shear rates as indicated by
the arrows in (a): 0.01, 0.1, 1 and 5 s−1. The lines indicate two shear
bands.

4. Experimental details

SANS experiments have been performed at the SANS I
instrument at the SINQ spallation source at the Paul Scherrer
Institute (PSI) in Villigen, Switzerland (Kohlbrecher and
Wagner 2000). We used thermal neutrons of wavelength
λ = 0.8 nm with a wavelength spread �λ/λ of about 0.1.
The data analysis was performed using the BerSANS software
package (Keiderling 2002). A standard water sample was used
for calibration of absolute scattering intensities and also to
account for non-uniform detector efficiency. For the Rheo-
SANS experiments a Rheowis strain-controlled rheometer with
a couette type shear cell (bob: 48 mm radius, cup: 50 mm
radius) was placed in the neutron beam in the so-called radial
configuration. In this configuration the neutron beam passes
through the centre of the sapphire cell, transparent for neutrons,
and is parallel to the gradient direction so that the flow-
vorticity plane is probed by the 2D detector. The accessible
torque range is between 10−7 and 0.046 N m, the frequency
range between 5 × 10−3 and 10 Hz and the amplitude range
between 5 × 10−2 and 45. Both steady state and oscillatory

experiments were performed. In order to probe the time-
dependent structural changes with SANS under oscillating
shear, a stroboscopic data acquisition scheme, implemented
on the SANS-1 instrument, has been used. The electronics
of the rheometer supplies a low and high signal depending
on the turning direction. The falling edge of this rectangular
signal has been used to trigger the data acquisition of the
scattered neutrons, producing histograms of 128 × 128 pixels
of 0.75 ×0.75 cm2 spatial resolution and at least n = 100 time
channels of widths �t = (n × ω/2π)−1, where ω/2π is the
frequency of the applied oscillating shear. The time of flight ttof

of the scattered neutrons between sample and detector has been
corrected to obtain the exact phase between applied shear and
scattered neutrons. However, this correction can be practically
neglected as the applied shear frequencies are much lower
than 1/ttof. Before starting the neutron data acquisition the
rheometer was oscillating for several cycles to ensure that no
transient effects were measured. To obtain sufficient counting
statistics for each time channel, the histograms of many shear
cycles were summed up over a time going from 1 h to
15 min for the lowest and highest concentration, respectively.
With this technique the temporal evolution of the structural
alignment of the diblock copolymers during a whole shear
cycle could be measured.

Fast Fourier transform rheological experiments were
performed on a strain-controlled rheometer (ARES, TA
instruments), using a couette geometry (bob: 32 mm radius,
cup: 34 mm radius). The stress response to dynamic
strain experiments has been simultaneously recorded with a
Analog Digital Card and analysed with fast Fourier transform
software as described in (Wilhelm et al 1998). The same
instrument was used for step-rate experiments and to obtain
flow curves. Spatially resolved velocity profiles were measured
on a homebuilt heterodyne dynamic light scattering set-up
using a closed, transparent couette cell (2 mm gap), see
e.g. (Salmon et al 2003).

5. Results and discussion

5.1. Flow curve and step-down rheology

The Pb–Peo block copolymer under study forms wormlike
micelles in water solution. As molecular wormlike micelles,
consisting of surfactant molecules, these giant wormlike
micelles show a pronounced shear-thinning behaviour.
Figure 1(a) shows the stress as a function of the shear
rate for Pb–Peo solutions with volume fraction between 1%
and 2%. These concentrations lie close to the suggested
literature value for the I–N transition (Won et al 1999), but
are still in the isotropic phase. All the curves in figure 1(a)
exhibit a shear-thinning region which extends to lower shear
rates with increasing volume fraction of micelles, while the
corresponding stress plateau becomes flatter. For the sample
with the highest concentration, i.e. [Pb − Peo] = 2%, we
tested if the sample shows shear banding, as is expected
for extreme shear-thinning samples (Dhont and Briels 2008,
Olmsted 2008). A few typical velocity profiles relative to
the applied shear rate within the gap of the couette cell are

4
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Figure 2. (a) The response of the normalized stress
σN(t) = σ(t)/σ (t → ∞) to shear rate quenches from the fully
nematic state into the biphasic region. The initial shear rate was
γ̇ = 7 s−1 and the low shear rates were varied between γ̇ = 0.8 s−1

(bottom) and γ̇ = 2.0 s−1 (top). (b) The magnitude of the stress
response �σN, obtained from the fit to σN(t) = 1 − �σN e−t/τ as a
function of the shear rate. Lines are guides to the eye. (c) The
resulting binodal points obtained from the shear rate in (b) where
�σN becomes zero. The circle indicates the equilibrium I–N binodal,
that is, the binodal point in the absence of flow. The line is a guide to
the eye, representing the non-equilibrium binodal. The open star
indicates the location of the spinodal at zero shear rate.

plotted in figure 1(b), as obtained from spatially resolved
heterodyne light scattering measurements. Shear banding is
observed between 0.1 and 0.75 s−1, which corresponds to the

flat region in the flow curve in figure 1(a). At the lowest
investigated shear rate, 0.01 s−1, the velocity profile is linear
(see figure 1(b)). Increasing the shear rate to 0.1 s−1, inside the
stress plateau region, a banded structure can be recognized and
the velocity profile shows a characteristic kink, as can be seen
from figure 1(b). In the investigated overall shear-rate range,
the average shear rate in the high shear-rate band is twice that
of the lower shear-rate band. The fraction of the gap occupied
by the high shear-rate band increases with the overall shear
rate, and for shear rates higher than 1 s−1 the low shear-rate
band disappears and a linear profile is re-established.

In order to locate the isotropic–nematic binodal, i.e. the
point where the isotropic phase becomes metastable, rheology
is a very useful tool as the viscosity of the micellar solution is
very sensitive to the local orientation of the worms. To exploit
the large difference between the viscosity of the isotropic
and nematic phases, we performed step-down experiments in
the concentration region between 2% and 5%. As we have
shown in an earlier paper on rod-like viruses (Lettinga and
Dhont 2004), the viscosity of the system will increase in time
when the system is quenched from a high shear rate, where
the nematic phase is stable, to a lower shear rate, where the
nematic phase becomes meta- or unstable. Figure 2(a) shows
an example of the normalized stress σN(t) = σ(t)/σ (t → ∞)

(where σ is the shear stress) as a function of time after the
shear rate was quenched from 7 s−1 to a final value ranging
from 2 to 0.8 s−1. The curves are fitted to a single exponential
σN(t) = 1 − �σN e−t/τ , where �σN depends on the fraction
of the formed isotropic phase, which tends to zero at the
binodal point. Thus, for each concentration the binodal point
was determined as the shear rate at which �σN vanishes
(see figure 2(b)). The resulting binodal points are plotted
in figure 2(c). This figure constitutes the low concentration
branch of the non-equilibrium binodal for the Pb–Peo block
copolymer system. The equilibrium I–N binodal, in the
absence of flow, is found to be located at [Pb − Peo] =
1.7 ± 0.1%. The open star in figure 2 indicates the location
of the spinodal at zero shear rate. How this spinodal point was
determined will be discussed later.

As we are dealing with a system that can also be described
as flexible rods, we know from Chen (1993), for example, that
the I–N phase coexistence region is very broad and thus the
location of the I–N spinodal can be found at a significantly
higher concentration than the I–N binodal. In the case of
rigid rods, the collective rotational diffusion becomes very
small on approach of the spinodal point, as discussed in
section 2. For semi-flexible chains, the rotational motion of
the Kuhn segments will become very slow on the approach of
the spinodal. We will now employ dynamic experiments to
access this slowing down. We want to do this not only on the
macroscopic level, i.e. by rheology, but also on the microscopic
level, in order to establish a link between the behaviour of
Kuhn segments and the measured stress in the system.

5.2. SANS on quiescent and stationary sheared samples

The quiescent dispersion of Pb–Peo micelles has an angle-
averaged scattering pattern as plotted in figure 3(a). At low

5
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Figure 3. (a) Angle-averaged SANS curve at zero shear. The full
line indicates the q range where a q−1 dependence is found, typical
for rods. (b) Scattering pattern of 1% Pb–Peo in deuterated water at
shear rate γ̇ = 1 s−1 in the flow-velocity plane. The dashed lines
indicate the Q range that is used to obtain the azimuthal intensity
profile as plotted in (c). Here θ is the angle with the shear flow and
the full line indicates a fit to equation (13).

(This figure is in colour only in the electronic version)

Q values, the scattering curve shows a I ∼ q−1 dependence,
typical for rods. The transition from I ∼ q−1 to a I ∼ q−2

dependence that is expected for wormlike micelles is outside

Table 1. Structural micelle characteristics as obtained from fitting of
the SANS curve in figure 3.

Nag (nm−1) σcore (nm) σshell (nm) β

26.5 6.4 7.8 3.65

the experimental window. This shows that the persistence
length of the worms is at least 500 nm, in agreement with
previous experiments on the same system (Won et al 1999).
For this reason the data could be fitted with the form factor of
a long cylinder. The details of the fitting procedure are beyond
the scope of this paper and will be described elsewhere. The
main point is that the cylinders are assumed to have a uniform
core and a shell with an exponential density profile, i.e. density
∼(1 − r) e(−αr), where r = r−σcore

σshell
. From the fitting, the core

and shell radii σcore and σshell, the aggregation number per unit
length and the exponent α have been obtained. The numerical
values of these parameters are given in table 1. The values
for the cylinder cross section is in agreement with that already
reported in the literature (Won et al 1999).

Figure 3(b) shows a typical scattering pattern of Pb–Peo
under shear conditions (with γ̇ = 1 s−1), which shows the
shear-induced anisotropic structure. This can be more clearly
seen in the azimuthal intensity profile, as plotted in figure 3(c),
which is obtained from the part of the scattering pattern in
figure 3(b) where the scattered intensity is proportional to q−1

(the area in between the circles in figure 3(b)). Assuming
a Maier–Saupe type of orientation distribution function, the
azimuthal scattered intensity I (Q, θ) from the nematic phase
is generally well described by (Picken et al 1990)

I (Q, θ) ∼ exp {β P2(θ) − 1} , (13)

where the parameter β describes the width of the intensity
profile and P2 is the second-order Legendre polynomial. The
solid line in figure 3(c) shows an example of a fit of the
expression in equation (13) with the experimental data as
obtained from the scattering pattern in figure 3(b). The scalar
order parameter 〈P2(θ)〉 can then be calculated from

〈P2(θ)〉 =
∫ π

0 exp {β P2(θ)} P2(θ) sin(θ) dθ
∫ π

0 exp {β P2(θ)} sin(θ) dθ
. (14)

In this way, the order parameter 〈P2(θ)〉 can be obtained from
scattering data for each shear rate at different concentrations.
As expected, flow-induced orientation of the cylindrical
micelles is observed.

In Förster et al (2005) it is suggested that the shear
viscosity is a universal function when plotted against the
orientational order parameter, independent of concentration.
We indeed find such a behaviour for our Pb–Peo system, as
can be seen from figure 4. For the two concentrations of 1
and 2%, the two curves fall on top of each other. Contrary
to Förster et al (2005), we do not find a linear dependence of
the viscosity on the order parameter, probably due to the fact
that we also used data at shear rates lower than those where the
stress plateau occurs.

6
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Figure 4. The scaled viscosity η (with η0 the viscosity at zero shear
rate) versus the orientational order parameter 〈P2〉.

5.3. Dynamic experiments

Oscillatory shear-rate experiments were performed for
concentrations lower and around the I–N equilibrium binodal
point, i.e. between 0.5 and 2%. As for steady-state
measurements, the order parameter 〈P2〉 can be calculated
from SANS experiments according to equations (13) and (14)
at each point in time during an oscillation. In this way we
probe the time dependence of the orientational order parameter
〈P2〉. In order to compare and relate the orientational response
with the change in the stress the stress response was also
recorded and analysed by fast Fourier transform rheology
experiments on samples in a somewhat broader concentration
range between 0.5 and 2.5%.

In figure 5 we plot the time-dependent response of 〈P2〉
((a) and (b)) and the stress ((c) and (d)) of a 2% sample. In
figures 5(a) and (c), the response for different shear amplitudes
γ̇0 (see equation (8)) is shown, where the maximum shear
rate during an oscillation is kept constant by adjusting the
frequency. In figures 5(b) and (d), the response for different
frequencies is shown, where again the maximum shear rate
during an oscillation is kept constant, but now by adjusting
the shear amplitude. The first thing to note is that the order
parameter oscillates with twice the frequency of the applied
shear rate, even for low shear rates where the stress response
is linear in the shear rate. The reason for this is that the
scattering experiments probe the flow-vorticity plane, so that
the measured order parameter characterizes the orientational
order within that plane. As already discussed in section 2, there
is no linear response of the order parameter in this plane and
the leading response is quadratic in the shear rate. This results
in the double-frequency response of the probed projection
of orientational order. The experimental trends are in good
qualitative agreement with the theoretical calculations based
on equations (7) and (1), as can be seen from figure 6, where
figure 6(a) should be compared to the experimental results in
figure 5(b), and figures 6(b)–5(d). The theoretical curves have
the same form as the experimental curves, exhibiting similar
trends on changing frequency and shear amplitude. In order to
quantify the dynamic response we analyse this response on the
basis of the Fourier modes as given in equations (9) and (10)

for the stress and (flow-vorticity projected) orientational order
parameter 〈P2〉, respectively. The experimental phase shifts
for the 2% sample are shown in figures 7(a), (c) and (e). The
Fourier amplitude ratios that measure the departure from linear
response, |P2|4/|P2|2 for 〈P2〉 and |η|3/|η|1 for the stress, are
plotted in figures 7(b), (d) and (f).

As mentioned in the theory section 2, the rate at which
a dispersion of rods relaxes close to the spinodal point is
determined by the effective diffusion coefficient Deff given
by equation (5). There are two unknown parameters in
this equation, namely the spinodal concentration, i.e. the
concentration where L

d φ = 4, and the rotational diffusion
at infinite dilution Dr. When critical slowing down is
at the origin of the difference in dynamic response for
various concentrations, we should find scaling when response
functions are plotted against effective quantities, like the
effective Peclet number in equation (11) and the effective
Deborah number in equation (12). In order to test such a
scaling for relatively low shear rates, we need to know the
concentration where the I–N spinodal in the absence of flow
is located. In view of our expression (5) for the effective
rotational diffusion coefficient, we will use the following
similar form for the effective diffusion coefficient of the Pb–
Peo system:

Deff
r = Dr {1 − [Pb − Peo]/C} , (15)

where, as before, [Pb − Peo] is the concentration of Pb − Peo
and C is a scaling parameter that determines the location of
the I–N spinodal. For a given value of the parameter C ,
the effective Peclet and Deborah numbers are calculated from
equations (11) and (12).

As can be seen from figure 9, all experimental data for
phase shifts and nonlinear response functions collapse on a
single curve when C is taken equal to 3. This is true for
both the stress response as well as for the response of the
orientational order parameter 〈P2〉 (projected on the flow-
vorticity plane). This is in accord with the idea that the
concentration dependence of the response of both orientational
order as well as the stress is related to critical slowing down.
Thus, in terms of polymer concentration, the spinodal point
is located at [Pb − Peo]spin = 3%. The spinodal point is
indicated by the open star in figure 2(c). This spinodal
concentration seems to be in accord with the somewhat lower
binodal concentration of 1.7% in the absence of flow.

The spinodal concentration can be estimated from the
length, thickness and volume fraction of the wormlike
micelles, neglecting the effect of the flexibility. As discussed
before, the structural parameters of the wormlike micelles have
been derived from fitting of scattering data (see table 1). In
this way we can estimate the location of the I–N spinodal
by equating both expressions (5) and (15) for the effective
diffusion coefficient. Since φ = 2.73 × [Pb − Peo], d =
14.2156 nm and L = 1 μm (L obtained from DLS and
microscopy data, to be published) we find that

[Pb − Peo]spin = 4

2.73
× d

L
= 2.1%, (16)

7
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Figure 5. Time-dependent response of the orientational order parameter 〈P2〉 ((a) and (b)) and the stress ((c) and (d)) to an oscillatory shear
flow at a shear rate of γ̇max = 1.0 s−1 ((a) and (c)) and a frequency of 0.05 Hz ((b) and (d)) at a concentration of 2% Pb–Peo. The thin dotted
curves indicate the applied shear rate. The time t is scaled with the period T of oscillation.

Figure 6. Theoretical predictions for the response of (a) the stress and (b) the order parameter 〈P2〉 for 
 varying from 3 to 60. The arrows
indicates increasing 
. The effective Peclet number is Peeff = 75 and the concentration is L

d ϕ = 3.3. The time t is scaled with the period T of
oscillation.

which, in view of the neglect of flexibility in obtaining this
number, is in reasonable agreement with the value obtained
from the dynamic experiments.

In order to compare the experimental results with theory,
the rotational diffusion at infinite dilution Dr needs to be
determined. To do so we determine the Deborah number 
eff

for which the limiting values for the phase shifts for Peeff → 0
as found in the experiments is reproduced. As can be seen
in figure 8 there is a reasonable comparison, especially for
ε2(Peeff → 0), between the theoretical calculation using

eff = 24 and the experimental frequency of 0.05 Hz at a
concentration of 2%. Since we know from the scaling that C =
3, it follows that L

d ϕ = 10/3 for this concentration, and thus,
with equation (12), we find that Dr = 0.04 s−1. This number,
together with the dimensionless concentration L

d ϕ, was used

in the scaling of the frequency and shear rates in figure 9. In
this figure, as well as in figure 8, the theoretical validity of the
scaling argument is tested by calculating the dynamic response
at two different dimensionless concentrations L

d ϕ = 10/3 and
5/3, having the same distance to the spinodal point as the 2%
and 1% samples.

The theoretical frequency dependence of phase shifts
and nonlinear response functions exhibit the same features
as the experimental results, as can be seen from figure 9:
the functional form of both is reproduced and the absolute
values are in qualitative agreement. Due to the neglect of
flexibility, a quantitative agreement is not expected. What is
more important, however, is that the functional variation with
the effective frequency is the same for both experiment and
theory. We can therefore draw the important conclusion that

8
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Figure 7. Results of the Fourier analysis using equation (10) for 〈P2〉(t) (open symbols) and equation (9) for the stress (filled symbols) at 1%
((a) and (b)) and 2% ((c)–(f)) Pb–Peo. ((a), (c) and (e)) are plots of the phase shift δ1 for the stress and ε2 for 〈P2〉, while ((b), (d) and (f)) are
plots of |η|3/|η|1 for the stress and |P2|4/|P2|2 for 〈P2〉), which quantities measure the departure from linear response. In ((a)–(d)), the shear
rate is fixed to γ̇max = 4.0 s−1 for 1% Pb–Peo and γ̇max = 1.0 s−1 for 2% Pb–Peo. In ((e) and (f)) the frequency is fixed to ν = 0.05 Hz.

the scaling with equation (15) in the experiments is justified.
In other words, the flow response of the Pb–Peo system scales
with the distance from the spinodal point.

The correspondence between theory and experiment is
especially satisfactory for the frequency dependence of the
phase shift in 〈P2〉, ε2 in figure 9(c) and the nonlinearity in the
stress, given by |η|3/|η|1 in figure 9(b). This correspondence
confirms the choice of Dr = 0.04 s−1. The experimental
phase shift δ1 in the stress, given in figure 9(a), however,
shows a more pronounced frequency dependence as predicted
by theory. Concerning the phase shifts, it is interesting to note
that, at low frequencies, 〈P2〉 is in phase with the applied shear
field γ̇ ∝ dγ

dt ∝ cos(ωt) and ε2 = 0, while at high frequencies
ε2 → π . For the stress we observe that at low frequencies δ1 =
π/2, corresponding to fluid-like behaviour, while δ1 decreases

with increasing frequency, but never reaches 0, which value
corresponds to solid-like behaviour. The variation of ε2 is twice
that of δ1 due to the fact that 〈P2〉(t) ∼ γ̇ 2, as discussed before.

The frequency dependence of the nonlinear response
functions show that with increasing frequency the system
becomes more linear (at the cost of an increasing phase shift).
The linear response regime therefore extends up to larger shear
rates when the frequency increases. The reason for this is that,
at high frequencies, microstructural order is not able any more
to fully respond to the external field.

There is a considerable discrepancy between the value of
the orientational diffusion coefficient Dr at infinite dilution
that one would calculate for the length and thickness of the
worms from well-known expressions for stiff rods (Tirado et al
1980) and the value found in our experiments. It is unclear

9
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Figure 8. Shear rate dependence of the phase shifts δ1 and ε2 for the
theoretically calculated response of the stress (bottom curves) and the
orientational order parameter 〈P2〉 (top curves), respectively, at a
scaled volume fraction of L

d φ = 10/3 (solid line) and L
d ϕ = 5/3

(dashed line). The effective Deborah number is 
 = 24eff. The
symbols give the experimental response for the stress (solid) and
〈P2〉 (open) at 2% Pb–Peo, scaled with the orientational diffusion
coefficient at infinite dilution with a value of Dr = 0.04 s−1 and
C = 3.

whether this is the result of the flexibility of the rods. Another
source for this discrepancy might be that the theory neglects
dynamical correlations. In the derivation of equations (1)
and (7), the rod–rod pair-correlation function is taken equal
to the Boltzmann exponential of the pair-interaction potential.
This is asymptotically exact for very long and thin hard
rods for the calculation of thermodynamic quantities of rod
suspensions. For dynamical processes (with or without
shear flow), however, such an approximation for the pair

correlation is approximate, and particularly neglects dynamical
correlations. Simulations have shown that such correlations
are of importance, at least for fast dynamical processes (Tao
et al 2006). The simulations show that critical slowing down
is enhanced by dynamical correlations. This might explain the
above-mentioned discrepancy between theory and experiment.
This is a subject for future investigations.

6. Conclusion

The aim of this paper is to find the microscopic mechanism of
the strong shear-thinning behaviour of giant wormlike micelles
consisting of Pb–Peo block copolymers. The dynamics of
the stress is probed by dynamic shear experiments in the
linear and nonlinear regimes using Fourier transfer rheology.
The dynamics of the orientational order parameter under
oscillatory flow is studied with a newly developed time-
resolved neutron scattering set-up. It is shown that critical
slowing down of orientational Brownian motion due to the
vicinity of the isotropic–nematic spinodal is responsible for the
shear-thinning behaviour. The response functions for different
concentrations are indeed identical when plotted against an
effective Deborah number that accounts for critical slowing
down. In a certain shear-rate range, shear thinning is so
strong that gradient shear banding occurs, where flow profiles
have been measured with heterodyne light scattering. The
location of the binodal in the shear rate versus concentration
plane is determined by step-down rheology, and the spinodal
concentration in the absence of flow is obtained from the
scaling behaviour of response functions. Both the measured

Figure 9. The phase shifts ((a) and (c)) and nonlinearity ((b) and (d)) for the stress ((a) and (b)) and 〈P2〉 ((c) and (d)) versus the Deborah
number. The symbols indicate the experiments for different concentrations. The solid lines give the theoretical responses for L

d ϕ = 10/3 and
the dashed line for L

d ϕ = 5/3. For the scaling of the experimental frequency we used a value for the orientational diffusion coefficient at
infinite dilution of Dr = 0.04 s−1 and C = 3 was used, see equation (15). Peeff = 250 for all data.
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linear and nonlinear stress response and order parameter
response are in qualitative agreement with a theory for stiff
rods that includes critical slowing down on approach of the
isotropic–nematic spinodal. The comparison with theory,
however, is qualitative since the theory neglects flexibility.
Another possible reason for deviations between theory and
experiments might be that the theory neglects dynamical
correlations, which have been shown by simulations to enhance
critical slowing down. In surfactant wormlike micellar
systems, shear thinning can also be due to breaking and stress-
induced merging of worms. The breaking and merging of
worms can give rise to strong shear thinning by itself, and can
give rise to shear banding in the absence of critical slowing
down, far away from the spinodal. Scission and stress-induced
merging probably do not play a role in the Pb–Peo block
copolymer system that we studied here.
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